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Diffusion in Random One-Dimensional Systems 

J. Bernasconi ~ and W.  R. Schneider I 

Diffusion on the one-dimensional lattice g is described by a master equation 
with nearest-neighbor transfer rates (symmetric or asymmetric). The transfer 
rates associated with bonds are assumed to be independent, equally distributed 
random variables. Under various conditions on their common distribution the 
large time behavior of averaged site probabilities and/or  related quantities is 
exhibited. 
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1. INTRODUCTION 

We consider a particle moving randomly on the one-dimensional lattice 7? 
starting at site j .  This motion is conveniently described by the probability 
Pn(t) of finding the particle at time t >/0 on the site n. Obviously, 

P.(0) = 6.j, n E 7/ (1.1) 

as the particle starts with certainty at j .  The simplest equation describing 
the change in time of these probabilities is a first-order linear differential 
equation, i.e., 

lPn(t) = E Tnmem(t) (1.2) 
m 

As the particle does not get lost, destroyed, or trapped, the total probability 
is conserved: 

~ P . ( t )  = 1, t >1 0 (1.3) 
n 
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Differentiating (1.3), inserting (1.2), and setting t = 0 yields 

Tnj = 0 (1.4) 
n 

As the equation of motion should not depend o n  the initial condition, we 
require (1.4) to hold for any j .  This allows us to rewrite (1.2) as 

The first term corresponds to gains by hops ending in n implying for the 
so-called transfer rates 

T~m/> 0, n r m (1.6) 

whereas the second term describes the losses by hops starting in n. We 
restrict ourselves to the case of nearest-neighbor hopping, i.e., 

T,,,~ = O, In - m I > 1. (1.7) 

It is convenient to set 

Wn+ 1 = Tn,n+l,  Wn + = T,+l, . (1.8) 

Note that the pair ( W , + , W , + 1 )  is associated with the bond (n ,n  + 1). 
Inserting (1.7), (1.8), into (1.5) leads to 

Pn = W n + - l P . - I  "IV W ~ + l P n + l  - ( m n  + + m n -  )Pn (t.9) 

Symmetric diffusion is characterized by a symmetric transfer rate matrix, 
i.e., Tin, = T,m for all m, n. For nearest-neighbor hopping this implies 

Wn + = W.-+, ~ W n (1.10) 

In ordered systems the transfer rates have fixed nonnegative values inde- 
pendent of n. Fourier transformation of the corresponding version of (1.9) 
yields 

O_,k=(eikW+ + e - i k w - - - W + - - W - ) Q ~ ,  Q k = ~ , e n e  "k (1.11) 
n 

with k E [0,2~r). Taking (1.1) wi th j  = 0 into account, (1.11) is solved by 

Qk(t)  = e x p t ( e i k W  + + e - i k w -  -- W + - W - )  (1.12) 

Inversion of the Fourier transform yields 

W + . n / 2  
p , ( t ) = e - t ( w + + w - ) ( - - ~ - =  - ) I I , t [ 2 ( W + W - ) ' / 2 , ]  (1.13) 

where I~ denotes the modified Bessel function of order ~. For the mean 
displacement of the particle we obtain 

x ( t )  =-- ~ , n P , ( t )  = ( W  + - W -  )t (1.14) 
n 
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using the generating function of the modified Bessel functions. Similarly, 
the mean square displacement is given by 

x2( t ) -=~,n2p , ( t )=(W + - W - ) 2 t 2 + ( W  + + W - ) t  (1.15) 
n 

By setting W + = W -  = W we obtain the corresponding results for sym- 
metric diffusion. 

2. ASYMMETRIC RANDOM DIFFUSION 

In ordered systems only the motion of the particle is stochastic, 
whereas the lattice in which the motion takes place does not contain any 
randomness. This is an idealization. Real lattices are always to a certain 
degree disordered (defects, impurities, etc.). A possibility to introduce 
disorder into our description of diffusion by (1.9) is to assume that the 
transfer rates W, -+ are random variables. In view of (1.9) also the site 
probabilities P,(t) and quantities derived thereof become random variables. 
The connection to observable quantities is established by averaging over all 
random transfer rates, denoted by ( ) .  

To be specific, we assume that the pairs (W + , 141,+ 1) are independent, 
equally distributed R2+-valued random variables. Their distribution is de- 
scribed by the probability measure v with support in R 2 . The particular 
choice 

= pS(u,o) + (1 - p)8(~o,v)  (2.1) 

with X, u, v > 0 and 0 < p < 1 describes a model in which 

(w2,w~l)=(u,O) 
with probability p and 

(w2, w.-+ 1) = (Xv, v )  

(2.2) 

(2.3) 

with probability 1 - p .  For this model the following large time behavior of 
the average mean displacement has been obtained ( 1): 

where 

wt, 

( x ( t) ) ~ ]  ap - 2ct /ln( ct), 

[p-2(ct)%( B-qn(ct)), 

k > l - p  

X = l - p  

k < l - p  

uv(X- 1 + p)  uv(l - X) 2 

(2.4) 

w = e X v  + (1 - e ) u  ' c - u + v ( 1  - ~ )  (2 .5 )  
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and 

a = - ln(1  - p ) ,  fl = - In) t ,  ~, = a / f l  (2.6) 

The function q, is periodic with period 1; explicitly, 

~(~)= ~ cn 
n = - ~  F(y + 1 + 2~rin/fl) 

with 

e 27rin~ (2.7) 

r e - ' ~ k - ' )  1-' 
n=~-~ cne --[ k=2"J-oo 1 + e_Nk_,  ) j (2.8) 

3. SYMMETRIC  RANDOM DIFFUSION 

Symmetric (nearest neighbor) random diffusion is described by (1.9) 
and (1.10), i.e., 

lf)n = W n - l ( P n - I  -- Pn)  "[- w n ( e n + l  - e n )  ( 3 . 1 )  

where the random transfer rates W,, n ~ Z, are assumed to be independent, 
equally distributed random variables. Their distribution is given by a 
probability measure p whose support has to be in R+,  as negative transfer 
rates do not occur. A Laplace transform in time, 

leads to 

fin(s) = fo~dt e-~tPn( t ) (3.2) 

sff, - 6no = Wn_,(fin_ ~ - fin ) + W n ( • + , -  L ) (3.3) 

having se t j  = 0 in the initial condition (1.1). 
We introduce auxiliary random variables X n and Yn, n = O, 1,2, 

. . . .  by setting 

x~ = 
1 - - +  

w~ s +  

1 i +  
W - n _  1 

L = 

1 
1 

1 
1 

- -  3 I -  . 

W~+I 

1 
1 

s +  1 
1 - -  . . ~  �9 

W - n -  2 

(3.4) 
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In  terms of these variables the solution of (3.3) is given by  

~-n = ~o ~I Ym-,(Ym + s ) - '  n = 1 ,2 ,  
r n = l  

e0 = (s + xo + r0)-'  (3.5) 

en : Po ~I Xm-l(Xm + s)  - 1 ,  F/ = 1,2, . . . 
r n = l  

Together  with the t ransfer  rates W n also Xn and Y, are all equally dis- 
tributed. However ,  the independerfce of the fo rmer  only implies that  all X,  
are independent  of all Y~. F r o m  (3.4) we read  off 

X . = [ W f  1 +(s+ X~+1)-1]  - l  (3.6) 

(and a similar fo rmula  for  Yn) showing clearly that  X.  and  X.+  1 are 
dependent .  However ,  W. and  X~+ 1 are independent  as the latter depends  
only on W m, m > n + 1. Hence,  we obta in  f rom (3.6) the integral equat ion 

/ts(Bx ) = f f dp(y)d/ts(z ) (3.7) 
As,x 

for  the probabi l i ty  measure  /ts describing the distr ibution of all Am, yn. 
Here,  we have  set 

o(Bx)= f do(x'), Bx=[O,x ) (3.8) 
Bx 

for an  arbi t rary  probabi l i ty  measure  o on R+ [note that  o is uniquely 
def ined if o(Bx) is given for all x / >  01. The  domain  As, x of integrat ion is 
given by  

As,x=((y,z) E R 2 + l ( y - l + ( s + z ) - l } - l < x }  (3.9) 

I t  has been  shown (2) that  (3.7) has a unique solution which m a y  be 
ob ta ined  as follows: Define  the sequence of probabi l i ty  measures  /t}n) 
n = 0, 1,2 . . . .  with/t~0) = u by  

/t~n+')(Bx)=ffa,,(y)a/t~")(~), ~--0,1,2 . . . .  (3.10) 

as,x 
Then  

/t~(Bx) = lim /t~")(B~) (3.11) n--). oo 

The ext remal  cases s = 0 and  s = ~ are explicitly solvable for  arbi t rary  p: 

/to = 80, /too = I, (3.12) 

(6~ is the Dirac  measure  si tuated at  a). For  p = 8w, w >1 0 (corresponding to 
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the ordered system with all W n = w) the solution for arbi t rary  s is 

t~s=Sa~), a ( s )= �89  (3.13) 

The  behavior  o f / ~  as s approaches  zero has been  investigated in Refs. 3 
and  4 for  v belonging to one of three classes of probabi l i ty  measures  
character ized by  their behavior  near  zero. Apar t  f rom more  technical 
assumptions  these classes are character ized by  the following: 

(C1) The  probabi l i ty  measures  v belonging to C1 satisfy 

foo~X-l dv(x) < oo a = (3.14) 

(C2) The  probabi l i ty  measure  p belongs to C2 if there are positive 
constants  a and  c such that  

foClv(Bx)- axlx-2dx < ~ (3.15) 

(C3) The  probabi l i ty  measure  v belongs to C3 if there are positive 
constants  a and  a, a < 1, such that  

lim0v (B x ) x ~ - I  = a l - ~  (3.16) 

Simple but  typical examples  are the following probabi l i ty  measures  v with 
density p = dv/dx: 

O(x)= 1, 1 < x < 2 : C 1  

O(x)=2x, 0 < x <  I : C 1  

O(x) = 1, 0 -<< x < 1 : C 2  (3.17) 

O(x) = ( 1 -  a)x -'~, 0 < x <  1 :C3  

The  behavior  of #s near  s = 0 is described as follows ~ 3,4): set 

, ( s )  = a - ' h  (3.18) 

where a is the constant  in (3.14), (3.15), (3.16), respectively, and  where h is 
given by  

h(x) = x 1/2, ( - 2 x / l n x )  1/2, x 1/~2-~) (3.19) 

for  v in C1, C2, C3, respectively. Then  

lira i~s( B,~s~x ) = ~r( B x ) (3.20) 
s$0 

with the probabi l i ty  measure  ~r given by  

~r = 61 (3.21) 
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for v E C1, C2. For v E C3 the density of 7r is given by 

( ) & r _  fly H 2~ ~/x 
ax r ( f i )  , fi)(o, f i)  

(3.22) 
fi = ( 2 - a ) - ' ,  y=[ f i 2F(a ) ]  ~ 

where H ~  n denotes a Fox function (s) (one of the generalizations of hyper- 
geometric functions). 

With the help of the probability measure /~s we may express the 
average (rio(s)) (which involves integration over all random variables W~) 
as follows: 

(&.)>=ffd,  s(x)+.(,)(s+ x (3.23) 

This follows immediately from (3.5) in view of the fact that X 0 and Y0 are 
independent and both distributed according to/~,. From (3.20)-(3.23) the 
following behavior of (/;0(s)> as s tends to zero is obtained: 

li~noo(fio(S))/[af(as)] = 1 (3.24) 

For v in C1, C2, C3 the function f is given by 

= 1 ~ - - l / 2  2-3 /2 (_ lnx /x ) , /2 ,  C~x- B (3.25) f ( x )  ~ , 

respectively, with 

Ca = f f + y)--I  (3.26) 

This integral may be evaluated using (3.22) with the result (6) 

C ~ -  7r 1 - a  (3.22)] (3.27) 
sin 7rfl F(/3 )2 ~/ [ fl, y as in 

By different methods (3.24)-(3.27) have been obtained in Ref. 7. The 
behavior of (fin(s~), n 4= O, as s tends to zero was obtained in Ref. 4 from 
the behavior of (Po(s)) using a scaling hypothesis. Recently, a theorem was 
announced (8) confirming this assumption. Thus, it is possible to determine 
the behavior of the diffusion function 

for s$O: 

D(s) = �89 n2(fin(s)) (3.28) 
11 

lim D (s) / [  a - lg (as) ] = 1 (3.29) 
s$0 L J 
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with 

g(x) = 1, 2 / ( - l n x ) ,  D~x ~/~2-~ (3.30) 

for C1, C2, C3, respectively. A direct approach to the behavior of D(s) has 
been presented in Ref. 7 where also an expression for the constant D~ is 
derived. By means of general Abelian and Tauberian theorems the large 
time behavior of (/;n(t)) and of the mean square displacement may be 
obtained. We refrain from reproducing these results. They may be found in 
Ref. 9 where also a comprehensive review of applications to a large variety 
of physical problems has been given. 
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